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Application of experimental, numerical, and machine learning methods to
improve drying performance and decrease energy consumption of tunnel-
type food dryer
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Department, Engineering Faculty, Firat University, Elazig, Turkey; cMechanical Engineering Department, Engineering Faculty, Firat
University, Elazig, Turkey

ABSTRACT
In this study, to distribute the drying air uniformly on the product surface, straight and trap-
eze air barriers were designed in the drying chamber of the existing tunnel dryer. The
effects of air barriers on product surface temperature changes were investigated by compu-
tational fluid dynamics analysis (CFD). Drying time in the experiment without an air barrier
decreased by 45% with the trapeze barrier and 20% with the straight barrier. Likewise, the
trapeze barrier provided 53.9% energy savings, and the straight barrier 37.4% energy saving
compared to the drying process carried out in the current system. Also, using the experi-
mental data, mathematical equations that can calculate activation energy (Ea) in the drying
process were produced with the help of regression-based artificial intelligence methods
(Pace and Elastic.Net). With the help of these equations, the Ea values of the drying process
performed under different experimental conditions were determined, and a 1.03% error
value was calculated between the obtained Ea values and the experimental values.
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1. Introduction

Fresh vegetables and fruits can spoil quickly due to
their high moisture content. Thanks to drying, the
moisture content can be reduced to low levels and the
storage period of the product can be extended. This
prevents the formation of microorganisms in the
product.[1] Today, energy-efficient long-term food use
methods have become increasingly important after
significant crises such as energy and food supply
problems.[2] Solar systems are widely used in food
drying.[3,4] Although the product drying process is
based on renewable energy in these systems, the dry-
ing times are pretty long. Since solar energy is not
continuous, complete drying of the food product does
not occur, and the amount of water in the product
does not decrease over a continuous period. This situ-
ation prolongs the drying process and adversely affects
the quality of the product. For these reasons, as an
alternative to solar energy systems, tunnel-type or
shelf-type drying systems are used for fast and high-
quality drying of products.[5–7] Since the continuous
drying process is carried out in tunnel-type dryers,
the drying rate of the product is relatively high.

Electricity is generally used as the energy source in
tunnel dryers. The generation of hot air with resist-
ance heaters increases electrical energy consumption.
In order to provide lower energy consumption, differ-
ent system designs are made in tunnel-type dryers.
These designs are usually made by computational
fluid dynamics (CFD) analysis. Turgut et al.[8] investi-
gated potato product drying behavior in tunnel dryers
at different temperatures and air velocities with the
help of CFD analysis and compared the results with
experimental data. With the use of CFD analysis, they
observed beforehand the drying behavior of the prod-
uct. Amanlou and Zomorodian[9] conducted CFD
temperature and velocity distribution analyses for
seven different drying cabinet types to achieve more
efficient drying in the cabinet dryer. They determined
the most effective drying chamber geometry through
these analyses. They compared the CFD analysis
results with the experimental results. Guangbin
et al.[10] performed CFD analyses to determine the
drying characteristics of forage seeds in the tray in a
cabinet-type 10-tray dryer. They compared the experi-
mental results with the CFD simulation results they
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obtained. With the help of these analyses, they deter-
mined which tray had the most effective temperature
and air velocity distribution. Babu et al.[11] have
designed a cabinet tray dryer with four different geo-
metries for thin-layer product drying. They used the
CFD analysis to examine the designed dryers’ air tem-
perature and velocity distributions. Olejnik et al.[12]

determined the uneven air distribution in the cabinet
dryer by CFD analysis. They obtained two different
designs for uniform air distribution in the dryer, and
they observed the air distribution results of these
designs with the help of CFD analysis. Darabi et al.[13]

made two geometric designs to achieve uniform mois-
ture distribution in the cabinet in the cabinet-type
dryer compartment. In these designs, they examined
velocity and moisture distributions under various
experimental conditions with the help of CFD ana-
lysis. Razavizadeh et al.[14] dried the rice product in a
laboratory bed dryer and investigated the air velocity
distribution of the dryer under different experimental
conditions with CFD analysis. Among the different air
chamber duct structures, they determined the most
effective duct type with the help of CFD analysis. Ju
et al.[15] expressed the temperature and moisture dis-
tributions during the drying process of papaya slices
in a convective hot air dryer based on 3D simulation.

When CFD studies for tunnel-cabin-type dryers
were examined in the literature, more uniform air dis-
tribution was provided as a result of the designs,
appropriate drying zone selection was realized, and
the optimum product drying tray geometry in the
drying system was determined. However, there was no
experimental or numerical study on the application of
air barriers in tunnel-type drying systems. In addition,
no CFD study predicts that the energy consumption
value could be reduced with the design of air barriers.
To fill this gap in the literature, the green capia pep-
per drying process was carried out in this study. For
this drying process to consume less energy and have
higher drying performance, two different air barrier
geometries were designed with the help of CFD ana-
lysis, and the most effective barrier geometry was
determined. Then, the air barriers examined with
CFD were manufactured, and their effects on the dry-
ing process under different experimental conditions
were investigated. Low energy consumption values
and increased product drying performance were
obtained compared to the pre-design. The motivation
of this study is to show the beneficial changes in
energy consumption and product drying performance
of tunnel dryers by simple designs obtained by CFD
analysis.

In the literature, in addition to CFD studies for the
more effective operation of tunnel dryers, many artifi-
cial intelligence studies have been carried out to deter-
mine the behavior of different parameters in tunnel
drying processes in advance. Many drying parameters
have been modeled using machine learning methods
in the literature, and valuable information has been
obtained thanks to these models. Liu et al.[16] investi-
gated the color changes of mushroom slices at differ-
ent air velocities (3, 6, 9, and 12m/s) and
temperatures (55, 60, 65, 70, and 75 �C). They used
machine learning-based Extreme Learning Machine
(ELM), integrated Bayes method (BELM), and trad-
itional Back-Propagation Neural Network (BPNN)
models to predict the color changes of mushroom sli-
ces during the drying process. In the simulation
results, root mean square error (RMSE) values for the
accuracy of the predictions were obtained as 0.059,
0.0688, and 0.0961 for BELM, ELM, and BPNN,
respectively. As a result of the study, BELM per-
formed better than BPNN and ELM. Batuwatta-
Gamage[17] developed a Physics Informed Neural
Network-based artificial network framework to predict
Moisture Concentration (MC) with Fick’s law of dif-
fusion and to predict Shrinkage (S) with the “free
shrinkage” hypothesis. They estimated the MC and S
values with an average accuracy of 81%. Kaveh
et al.[18] developed a neuro-fuzzy inference system
(ANFIS) and Artificial Neural Networks (ANN) model
to predict the effective moisture diffusion (Deff) and
specific energy consumption (SEC) values of potato,
garlic, and melon. They successfully estimated the Deff

(MSE ¼ 0.0074) and SEC (MSE ¼ 0.0057) values.
Meerasri and Sothornvit[19] used multiple linear
regression (MLR) and artificial neural networks
(ANN) to predict moisture ratio (MR) and drying rate
(DR) during the drying process of pineapple products.
The error value of the MR values predictive model
was calculated as 0.6865 RMSE and the DR as 0.8179
RMSE. Liu et al.[20] dried kiwifruit slices at different
temperatures and pressure values in a pulsed vacuum
dryer. They used a multilayer feed-forward neural net-
work (MLFNN) to predict the optimum drying condi-
tions. They used the ANN network of three inputs
(drying temperature, vacuum pressure duration, and
ambient pressure duration), one hidden layer, and one
output (comprehensive score). With the help of ANN,
they obtained the optimal drying condition at 65 �C,
12min VPD, and 2min APD, which obtained the
highest comprehensive score for dried kiwi slices.
Karaa�gaç et al.[21] used machine learning algorithms
ANN and support vector machine (SVM) to predict

2 M. CATALKAYA ET AL.



mushroom products’ MC and MR values in a photo-
voltaic-thermal solar dryer. The RMSE values of the
MC and MR predictive models were calculated as
0.033 and 0.039, respectively. Kartal and €Ozveren[22]

used an artificial neural network model to estimate
the activation energy (Ea), an essential parameter for
thermochemical processes. The ANN model they
obtained estimated Ea values with a mean absolute
percentage error (MAPE) value of 0.02. Fabani
et al.[23] used ANN to estimate the moisture content
of the watermelon pulp during the drying process.
They estimated the MR parameter in the drying
experiments at 70 �C with the help of ANN with an
error value of 0.026 RMSE. Massei et al.[24] used
machine learning to estimate freeze-dried products’
Residue Moisture (RM) value. They used the linear
regression (LR) model and ANN as machine learning
methods. They modeled the RM values with the help
of the LR method with an average RMSE error value
of 0.375 and with the help of the ANN method with
an RMSE error value of 0.352. Liu et al.[25] dried
mushroom slices at different temperatures and air
velocities in a closed-cycle hot air impingement dryer
and calculated the energy-exergy efficiency values of
the drying processes. They used an artificial neural
network to model the energy and exergy values in the
drying process. Their network includes four inputs
(drying time, air temperature, air velocity, and sample
thickness), one hidden layer, and four outputs (energy
absorption, energy utilization rate, exergy loss, and
exergy efficiency). Using the ANN network structure,
they obtained highly accurate predictive energy and
exergy models.

Models made for convective-type dryers using vari-
ous artificial intelligence methods (machine learning
algorithms) in the literature are generally parametric.
With these methods, which are label-based modeling,
a parameter with a numerical value (energy, exergy,
moisture content, effective moisture diffusion, mois-
ture ratio, activation energy) is modeled, and a
numerical value is obtained. The originality of this
study, which is different from the artificial intelligence
models for convective-type dryers in the literature, is
that it provides a method that can generate a math-
ematical equation to calculate the output parameter of
the input parameters used to create the model. With
the help of this equation, the parameter to be modeled
can be easily calculated. The study’s novelty is that a
mathematical equation is generated using a regres-
sion-based artificial intelligence method (Pace regres-
sion and Elastic.Net regression) to calculate the drying
process’s activation energy value in a tunnel dryer.

Elastic.net and pace regression methods, which are
different from classical regressions and define the rela-
tionship between one or more independent variables
by blending ordinary least squares (OLS) and
Empirical Bayes (EB) methods[26] were used to gener-
ate these equations.

2. Material and methods

In this study, experiments were carried out at constant
air velocities and temperatures. The experiments were
conducted to examine the drying parameters of the
products carried out in the existing experimental
setup and to observe the results of the modification
studies that would increase the system performance.
CFD analyses were also conducted to watch the effects
and design of the airflow barriers used to improve the
system’s performance. The flow chart of the present
study is shown in Figure 1.

In the experimental setup, two different drying
experiments were carried out. Experiment 1 was car-
ried out with the present experimental setup. This
study was conducted to examine both the moisture
content (MC), rate (MR), drying efficiency (�d), and
convective heat transfer coefficient (hc) parameters, as
well as to determine the energy consumption and dry-
ing time of the existing system. In Experiment 2, trap-
eze and straight air barriers determined as a result of
CFD analyses were placed in the current experimental
setup to reduce the system’s energy consumption and
the product drying time.

2.1. Experimental setup and procedure

The experimental setup used in this study is shown in
Figure 2. The experimental design; consists of a tun-
nel-type dryer (TTD) system with dimensions of
1800� 200� 200mm. This system consists of a
lamella electric heater for heating, one axial fan for air
circulation, four sensors (T-RH%) for humidity and
temperature measurement, two sensors for measuring
the indoor and outdoor temperature of the dried
product, one sensor for measuring air velocity, one
weight sensor for monitoring the weight change of the
product, and one air corrector for regulating the air-
flow in the tunnel (Figure 2).

Air enters the system; first, it passes through the
air velocity, humidity, and temperature sensors, comes
to the heater section, and is heated to the drying tem-
perature. Later, the air passes through the straightener
and humidity-temperature sensors and reaches where
heat and mass transfer occur at this section’s exit. It
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leaves the system by passing through the last humid-
ity-temperature sensor (Figure 3).

Straight and trapeze air barriers made of solid and
heat-resistant polymer foam were used for Experiment
2, which was conducted to increase the drying cham-
ber performance. The location and dimensions of the
air barriers used in the experiments are shown in

Figure 4. The air barriers were painted with thermal
paint to maintain the adiabatic feature of the drying
chamber. It was also covered with thermal foil to pre-
vent surface friction.

In the TTD experiment setup, two inverter drivers
adjust the heater power and fan speed, one data logger
receives data from the sensors, and a PLC automation

Figure 1. Flowchart of this study.

Figure 2. Experimental setup.
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controls the drying system. The PLC automation flow
chart is given in Figure 5.

2.1.1. Experiment 1
A total of three experiments were carried out, two at
50 �C drying air temperature and 1.5� 1m/s air
speeds, and one at 60 �C and 1.5m/s air velocity.
These experiments aim to obtain a quality mesh struc-
ture based on CFD analysis’s product surface tempera-
ture distribution. In Experiment 1, the existing
experimental system dried sliced fresh green peppers
weighing 100–105 g and an average size of
80� 20mm.

The final moisture of the product was determined
with the SHIMADZU MOC-63U moisture analyzer.
Figure 6 shows the variation in product surface tem-
perature and product weight during drying. As the

product surface temperature increased, the product
weight decreased. Experiments were terminated when
the change in product weight fell below 1 gram. The
final weight of the product was measured as 22 g. The
experimental measurement period was determined as
every 15min.

2.1.2. Experiment 2
In Experiment 2, trapeze and straight barriers deter-
mined as a result of CFD analysis were placed in the
drying chamber, and sliced fresh green peppers weigh-
ing 100–105 g and 80� 20mm in size were dried. In
the experiments, the drying air temperature was kept
constant at 50 �C, and the air velocity value was
chosen as 1.5m/s. The experiments were terminated
when the weight of the dried product reached 22 g
again (Figure 7).

Figure 3. Visuals of the experiments.

Figure 4. Air barriers.
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2.2. CFD analysis procedure

In this section, ANSYS Fluent program is used to
investigate and model the thermal behavior of the
designed tunnel dryer. Numerical analyses were per-
formed in the fluent mode for two different purposes.
The first is to determine the temperature distribution
on the design and product surface, and the second is
to observe the behavior of the trapezoidal-flat air bar-
riers on the system performance.

In the first step, the standard design of the TTD
(Figure 8a) was created. ANSYS software’s design
modeler subprogram was used to generate the geom-
etry of the designs to be placed in the TTD dryer
chamber. Based on the data obtained in the speed and
temperature domain, a modified version of the design
was created to achieve better performance (Figure 8b
and c).

ANSYS Fluent MESH subroutine is used in the mesh-
ing step of TTD. By applying the mesh density test in
the design, optimum node, and element sizes are selected
to have a reliable solution independent of the mesh size.
A mesh density test was performed for the dryer model
(without tray) to see the effect of mesh size on product
surface temperature. The mesh size has changed from
400000 coarse to 3500000 finer sizes. In Figure 9, as the
mesh number increased from 400000 to 2400000, the sur-
face temperature also increased from 314K to 324K, and
after, and after this point, it was observed that the surface
temperature did not change with the increase in the
amount of mesh.

The meshes produced for TTD are given in Figure 10.
The optimum mesh element sizes for TTDs are 3.448604,
2346395, and 2831566 for standard design, trapezoidal
and flat, respectively. In CFD simulations, solutions’

Figure 5. Automation flow chart of TTD experiment system.

Figure 6. Change in product surface temperature and weight.
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accuracy, fast convergence, and stability depend highly on
the mesh quality. Mesh quality is defined by many meth-
ods, the most common of which is skewness. In general,
skewness; is a function of the angle between any two
sides that make up the cell. The skewness value must be
below the maximum of 0.95 in CFD studies.[27] The max-
imum skewness for the lead design, perpendicular and

trapeze, is 0.62, 0.63, and 0.53, respectively. In addition,
the average skewness value is 0.25, 0.22, and 0.21, respect-
ively, and tetragonal elements are chosen. To refine mod-
eling near the wall and on product surfaces, Mesh was
further developed by performing the inflation process
consisting of 8 layers (Figure 10a). The net structure cre-
ated for the analysis was calculated as yþ <1 on the

Figure 7. Air barriers for tunnel dryer.

Figure 8. Geometries of standard and modified TTD.
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trapeze wall. Potgieter et al. followed the same method in
their work.[28]

Solution equations used in numerical analysis are
given in Equations (1)–(6).[29]

Continuity equation:

r: q: v!
� �

¼ 0 (1)

Navier-Stokes equation:

r: q: v!: v!
� �

¼ �rpþr: l r v!þr v!T
� �

� 2
3
r: v!I

� �� �
(2)

Energy equation:

r: ðV�! qEþ pð ÞÞ

¼ r: keffrT�h J
!þ l r v!þr v!T

� �
� 2
3
r: v!I

� �
: v!

� �� �
þ Sh

(3)

An essential parameter for the energy equation, Sh,
refers to the term containing the heat of chemical
reaction or other defined volumetric heat sources. The
turbulence solver Realizable k-E equations used in this
study are given below in terms of their general form
(Equations (4)–(6)).[30]

@

@xj
qkuið Þ ¼ @

@x_I
lþ lt

rk

� �
@k
@xi

" #
þ Gk þ Gb � qe (4)

@

@xi
qeuið Þ ¼ @

@xj
lþ lt

re

� �
@e
@xi

" #
þ qC1Se

� qC2
e2

kþ ffiffiffiffiffi
ve

p þ C1e
e
k
C3eGb (5)

C1 ¼ max 0:43,
g

gþ 5

� �
, ! g ¼ S

k
e
, ! S ¼ ffiffiffiffiffiffiffiffiffiffiffi

2SijSij
p

(6)

Figure 9. Effect of mesh density on surface temperature for the TDD.

Figure 10. Mesh configurations for TTD: (a) standard design, (b) trapeze, (c) straight.
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ðC1e ¼ 1:44Þ, ðC2 ¼ 1:9Þ, ðrk ¼ 1:0Þðre ¼ 1:2Þ

Pressure-dependent equations developed by
Patankar and Spalding are used as the SIMPLE
numerical algorithm. The mass, momentum, and
energy equations are iteratively solved for the corre-
sponding boundary conditions using numerical meth-
ods until convergence is reached for the relevant
variables (velocity, temperature, pressure, and wall
heat flux).[31]

2.2.1. Initial and boundary condition
Certain assumptions need to be made to model the
experimental conditions numerically. These assump-
tions facilitate the solution of numerical analysis and
express the intervals at which the problem will be
solved. The assumptions determined for numerical
analysis are defined as initial and boundary
conditions.

In this study, the airflow was 3D and entered the
dryer at a constant temperature. A mass inlet and an
outlet were defined for the dryer. Air distribution at
the HGK entrance was the same everywhere. The side
surfaces were entirely insulated. Turbulence extinction
and turbulent viscosity ratio are 5% and 10%, respect-
ively. The flow in the tunnel is considered incom-
pressible. Analyses are solved by considering steady-
state. The boundary condition in the outlet region is
defined as the pressure outlet.

2.3. Calculation procedure

In the drying experiments, MC, MR, hc, and ղd

parameters were examined. The equations used to cal-
culate these parameters are given below.

The amount of moisture in agricultural products is
the weight of water retained in the body. The amount
of water is defined proportionally in %. Equation (7)
was used for the moisture content values of the pep-
per product according to the dry basis.[4] The mois-
ture rate (MR), which shows the drying process
effectively, was calculated with Equation (8).

MCdb ¼ WW

Wd
100 (7)

MR ¼ Mt �Me

Mo �Me
(8)

In Equation (8), Mt, Mo, and Me are the anytime,
the initial, and equilibrium moisture contents (% dry
basis), respectively.[32]

2.3.1. Determination of the convective heat transfer
coefficient (hc)

The convective heat transfer coefficient (hc) can be deter-
mined using the expression for Nusselt number as[33,34]:

hc¼NuKV

X
hc¼KV

X
CðRe:PrÞn

(9)or for forced convection:

The heat utilized for moisture (Q_e) evaporation is
given as[33,34]:

_Qe ¼ 0:016
KV

X
CðRe:PrÞn P Tcð Þ�cP Teð Þ½ � (10)

On substituting hc from Equation (9), Equation
(10) becomes

_Qe ¼ 0:016
KV

X
CðRe:PrÞn P Tcð Þ�cP Teð Þ½ � (11)

The moisture evaporated is determined by dividing
Equation (11) by the latent heat of vaporization (k) and
multiplying with the area of tray (At) and time interval (t)

me ¼
_Qe

k
Att ¼ 0:016

KV

Xk
CðRe:PrÞn P Tcð Þ�cP Teð Þ½ �Att

(12)

Putting

0:016
KV

kX
P Tcð Þ�cP Teð Þ½ �Att ¼ Z

Equation (13) becomes
mev

Z
¼ CðRe:PrÞn (13)

Taking the logarithm of both sides,

ln
mev

Z

� �
¼ lnCþ n ln Re:Prð Þ (14)

Equation 14 is the analogy of an equation of a
straight line,

Y ¼ b1Xþ b0

where

Y ¼ ln
mev

Z

� �
,

b1 ¼ n, X ¼ lnðRe:PrÞ b0 ¼ lnC, thus C ¼ eb0 :
The different physical properties of humid air, i.e.

density (qv), thermal conductivity (Kv), specific heat
(Cv) and viscosity (mv), used in the computation of
Reynolds number (Re), and Prandtl number (Pr) have
been determined using the following polynomial
expressions.[33,34] For obtaining physical properties of
humid air, Ti is taken as average of product tempera-
ture (Tc) and exit air temperature (Te):
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qV¼
353:44

ðTiþ273:15Þ (15)

KV ¼ 0:0244þ 0:6733x10�4Ti (16)

CV ¼ 999:2þ 0:1434Ti þ 1:101 x 10�4Ti
2

� 6:7581 x 10�8Ti
3 (17)

lV ¼ 1:718 x:10�5 þ 4:620 x 10�8Ti (18)

P Tð Þ ¼ exp 25:317� 5144
ðTi þ 273:15Þ

� �
(19)

C and n constant values were determined with the
help of linear regression analysis using outlet air tempera-
ture, relative humidity value, and evaporative humidity
value in the product.

2.3.2. Drying efficiency
The drying efficiency of the tunnel dryer was calculated
by considering the power consumption of the fan and
heater in the drying system. The ratio of the total amount
of energy required to remove moisture from the product
to the total energy provided by the drying system refers
to the drying efficiency specified in Equation (20).[35] The
Mw value in the equation represents the amount of water
moving away from the product (kg), the Lh value repre-
sents the latent heat of evaporation of water (2381.9kJ/kg
for an average temperature of 50 �C), and the Eheater and
Efan represent the hourly power consumption (Watt h).

gd ¼ Mw� Lh
Eheater þ Efan

(20)

2.3.3. Diffusion coefficient and activation energy
The parameter that expresses moisture movement in
the product toward the product surface is called effect-
ive diffusion (Deff). The Deff parameter can be defined
as a function of the product’s moisture content and dry-
ing time under certain drying conditions. Fick’s second
law of diffusion is used for determining the Deff coeffi-
cient of the product in the drying process. The math-
ematical expression of this second law developed by
Fick and Crank[36] is given in Equation (21).

MR ¼ 8
p2

exp �p2Deff t

4L2

� �
(21)

In Equation (4), Deff is the effective moisture diffu-
sion in m2s�1, “t” is time (s), and L is the product
half-thickness (m) value. Equation 21 can be written
in a logarithmic format as follows.[37,38]

ln ðMRÞ ¼ ln
8
p2

� �
� p2Deff t

4L2

� �
(22)

The change of effective diffusivity with temperature
is expressed in Equation (23) by Arrhenius
equation.[37,38]

Deff ¼ D0 exp � Ea
RðT þ 273:15Þ

� �
(23)

In Equation (23), D0 (m2 s�1) is the pre-exponen-
tial factor of the Arrhenius equation, Ea (kJ/mol) is
the activation energy, R (kJ/molK) is the universal gas
constant, and T (�C) is the product temperature.

2.4. Uncertainty analyses

Manufacturing, fixed, and random errors have been
chosen for the uncertainties that will arise when meas-
uring temperature, air velocity, and humidity parame-
ters. It is necessary to determine the effects of these
factors that may create uncertainty on the total meas-
urement uncertainty. Equation (24) calculates the total
errors resulting from these effects in the parameters
measured in the experiments.[39] In this equation, the
total uncertainty is represented by WR, the measured
parameter is symbolized by R, the uncertainties caused
by the experimental measurement errors in the tests
are shown by x1, x2, .., xn, and the error rates associ-
ated with the independent variable are indicated by
w1,w2, … , wn.

WR¼ dR
dx1

w1

� �2

þ dR
dx2

w2

� �2

þ::::::::::þ dR
dxn

wn

� �2
" #1=2

(24)

2.5. Regression analysis procedure

2.5.1. Pace and Elastic.Net Regression methodology
The regression technique is a famous machine learn-
ing algorithm, and it is based on supervised learning
that utilizes the independent variable to reach the tar-
get value.[22] On the other hand, machine learning
consists of generic algorithms that give interesting
information about a specific dataset without writing a
code.[23]

2.5.2. Pace regression
Pace (Projection Adjustment by Contribution
Estimation) regression is an algorithm applied to
derive linear models based on analyzing different
regression models. Pace regression is used to reveal
the model that expresses the relationship between the
variable to be modeled and more than one
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independent variable.[40] The Pace regression is a
machine learning method that produces equations
that can express in detail the interaction between the
data to be modeled and other parameters in the data
set. Pace regression models by blending the ordinary
least square, and Empirical Bayes approaches. It gen-
erates a mathematical equation to explain the relation-
ship between the modeled parameter and other data
in the data set to be created. This equation can be
expressed as Equation (25).[41]

Modelled Parameter ¼ a1Aiþ a2Biþ a3Ciþ a4Di

þ a5Ei

(25)

The weight coefficient ai values affect the parame-
ters obtained by pace regression methods. For the
parameters modeled in Equation (18), the input
parameters are expressions such as A, B, C, D, and E.
It is an important criterion to create linear combina-
tions of features for the model to be obtained. Thus, a
simpler modeling design can shorten the required cal-
culation time.

2.5.3. Elastic.Net regression
As the number of data increases, the model created in
classical regression analysis becomes more complex.
Classical regression analysis is insufficient because
assumptions such as multicollinearity, normality, and
constant variance are not provided in predictive or
classification models.[42] In these cases where the clas-
sical regression method is insufficient, the Elastic.Net
method, which combines ridge and lasso regression
techniques, can be used.[43]

b Elastic:Netð Þ¼ arg minky � xbk2þk1kbk2þk2kbk
(26)

In Equation (26), mixed structure of the ridge and
lasso biased estimators are utilized in the calculation
procedure. So, k1 and k2 parameters are the source of
estimation in Elastic.Net approach. If k ¼ 0, ridge is
used as the regression. However, lasso is used when
k ¼ 1. This parameter is usually taken as 0.5 that is
the mean value although it is detected via testing in
the literature.[44]

Data Set-1 was created using experimental parame-
ters such as product surface temperature, air velocity,
drying chamber temperature, drying chamber humid-
ity value, and product weight obtained during the dry-
ing process. Data set-1 was obtained from the
experiments at 50 �C at 1.5m/s. Linear mathematical
equations were produced for the Ea value using Data
Set-1 and Pace and Elastic.Net regression methods. To

determine the accuracy of the produced Equations,
Data Set-2, created with the parameters obtained from
the drying experiments at 60 �C and 1.5m/s, was
used. Five hundred sixty data were used to model the
Ea values of drying processes. In machine learning
models, 70% of this data was reserved for training
and 30% for testing. Machine learning methods were
adapted to data sets with MATLAB software. The
characteristics of the data used are given in Table 1.

2.5.4. Error analyses
Root mean square error (RMSE) and mean absolute
percent error (MAPE) analyses were used to deter-
mine the accuracy of the models obtained by
Elastic.net and Pace regression methods. In the equa-
tions below, A is the actual value, P is the predicted
value and n is the number of values.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1�A1ð Þ2þ::::þ Pn�Anð Þ2

n

s
(27)

MAPE ¼ An�Pn
An












 !
�100 (28)

3. Result and discussion

This study investigated the drying behaviors of pepper
products in a tunnel-type food dryer. A CFD analysis
has been applied to speed up the drying process and
consume less energy. The results obtained are given
below under two headings.

3.1. Calculation procedure results

The calculation procedure was performed for experi-
ments conducted at 50C temperature and 1.5m/s air
velocity. Experiments were terminated when the
change in product weight fell below 1 gram. In the
calculation procedure, product weight change, surface
temperature, moisture content, drying efficiency, dif-
fusion coefficient values, activation energy, convective
heat transfer coefficient, and dimensionless moisture

Table 1. Input parameters and output parameters used in
machine learning algorithms.
Input parameters

Parameter Notation Unit Min. Max.
Product temperature Tsur �C 33.5 50.4
Relative humidity H % 16.4 58.15
Product weight W g 22.6 101.6
Air speed V m/s 1 1.5
Output parameter
Parameter Notation Unit Min. Max.
Activation energy Ea kJ/mol 0.15 0.09
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ratio values were investigated. The time variation of
weight and product surface temperature values meas-
ured in all experiments conducted in the tunnel dryer
is given in Figure 6.

Figure 11 shows the moisture content and moisture
content variation. At the end of the experiment, the
product moisture ratio reached 0.174, and the product

moisture content got 2.6%. The variation of the convect-
ive heat transfer coefficient values between the product’s
surface and the drying air during the drying period is
given in Figure 12. On average, the convective heat trans-
fer coefficient varied between 12.92-12.08 W/m2K.

Figure 13 shows the variation in drying efficiency
during the test period. While the average drying

Figure 11. Moisture content and moisture rate variation.

Figure 12. Variation of convective heat transfer coefficient with time.

Figure 13. Variation of drying efficiency over time.
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efficiency value was 34% during the first 150min, the
average drying efficiency was calculated as 18.4% at
the end of the experiment. Since the amount of mois-
ture evaporated from the product in the first period
of the drying process is higher, the drying efficiency is
high.

In the literature, graphs showing the variation of
Ea and Deff parameters according to drying air vel-
ocity are generally used.[45] In most studies, these
parameters are given as average values.[46] In some
studies, graphs expressing Ea and Deff values at the
drying process’s beginning, middle, and end are
added.[47] In this study, the variations of Ea and Deff

values according to time during the drying process at
50 C temperature and 1.5m/s air velocity were given

in Figure 14. According to Figure 14, Deff values var-
ied between 2.28� 10�10 and 0.68� 10�10 m2/s, and
Ea values ranged between 50.3 and 48.25 kJ/mol.

3.2. CFD simulation results

A full-size greenhouse dryer (Figure 15a) was analyzed
in the first step of the simulations. The velocity distri-
bution of the TTD (side view) is shown in Figure 15.
As seen in Figure 15a, a homogeneous velocity distri-
bution was obtained around the product in the dryer,
and no vortex was observed. Eddy currents were
obtained in simulations where air barriers were used
to increase the drying performance. Contrary to the
trapeze design, the eddy regions are more due to the

Figure 14. Variation of Deff and Ea values over time.

Figure 15. Air velocity distribution: (a) current design, (b) straight barrier design, (c) trapeze barrier design.
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high corner currents in the perpendicular design
(Figure 15b and c). These swirl zones have no contri-
bution to the drying process and may cause energy
loss. However, the increase in air velocity in these
regions will have an effect that reduces the drying
time, as it increases the amount of hot air passing

over the product. Therefore, in modified designs, it is
expected that the trapeze design with less eddy effect
will be more effective as it will reduce both energy
losses and drying time.

Figure 16 shows the temperature contour in the
airspace for three different drying chamber designs.

Figure 16. Tunnel-type dryer zone and product surface temperatures distributions: (a) standard design, (b) straight barrier design,
(c) trapeze barrier design.

Figure 17. Comparison between CFD and experimental results.
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Since the air velocity distribution is homogeneous in
the standard tunnel dryer simulation results, the tem-
perature gradient around the product is also homoge-
neous. While the ambient temperature was 313.8 K in
the standard tunnel dryer, the maximum product sur-
face temperature was 312.5 K. When the air barrier
designs placed in the drying chamber were examined
under the same experimental conditions, the max-
imum product surface temperature for the straight
barrier was 316.4K, and the maximum product sur-
face temperature for the trapeze barrier was 320.2 K.
This difference in the results is expected because, as
can be seen in the velocity distribution (Figure 15), in
the trapeze design, since the air passing over the prod-
uct moves faster, there is an average of 5 K

temperature difference from the product surface tem-
perature. Figure 17 shows the product surface tem-
perature values for the drying chamber outlet
temperature and the air barriers used, obtained
numerically and experimentally. As can be seen, the
numerically obtained values are close to the experi-
mental values. The maximum deviation obtained
between numerical and experimental temperature val-
ues is 8%.

In the CFD simulations results in Figure 18, as a
result of the experiments with the standard design,
the air velocities that must be given to the system to
obtain the product surface temperatures are shown. In
Figure 18, to reach the 320K product surface tem-
perature determined in the standard dryer design, the

Figure 18. Air velocity distribution for product surface temperatures.

Figure 19. Product surface temperature distribution after trapeze and straight barrier placements.

DRYING TECHNOLOGY 15



air velocity should be 1.12m/s in the straight barrier
design and 0.68m/s in the trapeze barrier design. In
this case, the air velocity decreased by 24.33% in the
straight design and by 54.67% in the trapeze design.
The high surface temperature was obtained at low air
velocity after the trapeze barrier. Thus, less energy
consumption is foreseen.

For the 1.5m/s air velocity in the standard tunnel
design, the experiments, which were terminated
according to the test procedure, lasted 600min, the
fan energy consumption was 155Wh, and the heater
energy consumption was 9297Wh. As a result of the
information obtained as a result of the CFD analysis,
the repeated experiments with the air barriers took

390min after the trapeze barrier was placed and
480min after the straight barrier was placed. This is
because, after the trapeze barrier, the air was distrib-
uted more evenly and contacted the product surface
area more. Thus, thermal losses were reduced, and
effective drying was achieved (Figure 19).

The heater and fan consumption values of the tun-
nel-dryer at 1.5m/s and 50 �C conditions are given in
Figure 20. After 600min, the electrical energy con-
sumption values of the heater and fan were measured
as 9452Wh in total. The experiments in the straight
barrier design under the same conditions took
480min, and the total energy consumption was
6885Wh. In the trapeze design, the test period was

Figure 20. Power consumption to the fan and heater values in the tunnel-type dryer.

Table 2. Efficiency equations obtained with Pace.
Model type Model equations

Pace Ea ¼152.0122þ 0.163 � Tsur þ 0.0005 � W �3.5111 � H3 þ 1.2731 � H4 �1.6505 � T3 þ 0.133 � T4 þ 2.2385 � V
Elastic.Net Ea ¼ 0,322 � Tsur þ 0,058 � W �0,141 � H3 �0,043 � H4 �0,097 � T3 þ 0,098 � T4 þ 0,019 � Vþ 34,882

Figure 21. Comparison of Pace and Elastic.Net Ea values with experimental Ea values.
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390min, and the total energy consumption was calcu-
lated to be 6140Wh.

3.3. Machine learning models results

In this study, the activation energy of the pepper dry-
ing process was calculated in the tunnel-type drying
system. Ea values were modeled using Data Set-1,
which consists of drying temperature, drying air rela-
tive humidity, air velocity, and product weight values
obtained from drying experiments. For Ea values,
mathematical equations were produced with the help
of regression-based artificial intelligence methods Pace
and Elastic.Net. Ea equations obtained using Pace, and
Elastic.Net methods are shown in Table 2. Data Set-2
obtained from different experimental studies was used
to determine the accuracy of the produced equations.

The results of the Ea equations obtained with the
experimental values are shown in Figures 21 and 22.
The Pace showed similarity to the experimental Ea
values with an R2 value of 0.87. Elastic.net, on the
other hand, showed similarity to the experimental Ea
values with an R2 value of 0.93. In Figure 22, the
results of the Elastic.net Ea equation approached the
experimental Ea values with an RMSE value of 0.2886.

Table 3 shows the machine learning models made
for drying parameters in the literature and the results

of the models. The table gives model drying parame-
ters, machine learning method, and model error val-
ues. The error values of the machine learning models
in Table 3 and the Pace and Elastic.net models used
in this study are close to each other.

4. Conclusions

The conclusions of this study, which include experi-
mental methods and CFD analysis to increase the
product drying rate and reduce the drying energy
consumption of a tunnel-type food dryer, are given
below.

� The 105 g pepper product drying time in the tun-
nel dryer was 600min. During this period, the
moisture content of the product decreased from
15.8% to 2.6% and the moisture ratio from 1 to
0.174.

� The convective heat transfer coefficient varied
between 12.92 and 12.08 W/m2K during the prod-
uct drying process.

� The average drying efficiency of the system was
calculated as 18.43%.

� With CFD analysis, the effects of the airflow bar-
riers placed in the existing tunnel dryer on drying
were examined. The results of these analyses were

Figure 22. Variation of Pace and Elastic.Net Ea values and experimental Ea values with time.

Table 3. Studies on modeling different drying parameters with machine learning methods.
Modeled parameter Machine learning method Error Reference

Color changes in product Extreme learning machine-integrated Bayesian methods 0.0563 RMSE Liu et al. [16]
Shrinkage Physics Informed Neural Network 0.19 MAPE Batuwatta-Gamage et al. [17]
Deff ANFIS 0.074 RMSE Kaveh et al. [18]
MR Multiple linear regression 0.6865 RMSE Meerasri and Sothornvit [19]
MC Support vector machine 0.033 RMSE Karaa�gaç et al. [21]
Ea ANN 0.02 MAPE Kartal and €Ozveren [22]
MR ANN 0.026 RMSE Fabani et al. [23]
Residue moisture Linear regression 0.375 RMSE Massei et al. [24]
Ea Pace regression 0.3816 RMSE, 0.0103 MAPE This work
Ea Elastic.Net regression 0.2886 RMSE

0.0148 MAPE
This work
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compared with the experimental results. CFD ana-
lysis results were similar to experimental values
with less than 2% error values.

� The drying time was measured as 390min with
trapeze barriers and 480min with straight barriers.
Thus, the trapeze barrier reduced the drying time
of the standard design experiment by 45% and the
straight barrier by 20%.

� In the tunnel-type drying system, 9.42 kWh of
energy was consumed in the product drying pro-
cess, while this consumption value was measured
as 6.14 kWh with the trapeze barrier and 6.88 kWh
with the straight barrier. Compared to the standard
design, the trapeze barrier design consumed 53.9%
less energy, and the straight barrier design con-
sumed 37.2% less energy.

� The mathematical equation produced by pace
regression calculated Ea values with an error of
1.03%. Likewise, the mathematical equation pro-
duced with Elastic.Net calculated Ea values with an
error of 1.48%.

With this study, it has been shown that CFD ana-
lysis provides beneficial information before design in
tunnel dryers and that significant energy savings can
be achieved thanks to the air barrier made within the
analyses presented. It is hoped that the methods in
this study, which is a reference application to reduce
the energy consumption of tunnel-type drying sys-
tems, will also be used in different drying systems. In
addition, the high calculation success rates of Pace
and Elastic.Net Ea equations, validated with different
experimental values, show that these machine-learning
methods can be used for various parameters in other
drying systems.

This study was supported by “Kahramanmaraş
S€utç€uimam University Scientific Research Foundation”
(project number 2021/7-14M). Kahramanmaraş S€utç€u
Imam €Universitesi;
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